

Animated Transitions in Statistical Data Graphics

Jeffrey Heer, George G. Robertson

Abstract—In this paper we investigate the effectiveness of animated transitions between common statistical data graphics such

as bar charts, pie charts, and scatter plots. We extend theoretical models of data graphics to include such transitions, introducing

a taxonomy of transition types. We then propose design principles for creating effective transitions and illustrate the application of

these principles in DynaVis, a visualization system featuring animated data graphics. Two controlled experiments were conducted

to assess the efficacy of various transition types, finding that animated transitions can significantly improve graphical perception.

Index Terms—Statistical data graphics, animation, transitions, information visualization, design, experiment

1 INTRODUCTION

In both analysis and presentation, it is common to view a number of
related data graphics backed by a shared data set. For example, a
business analyst viewing a bar chart of product sales may want to
view relative percentages by switching to a pie chart or compare
sales with profits in a scatter plot. Similarly, she may wish to see
product sales by region, drilling down from a bar chart to a grouped
bar chart. Such incremental construction of visualizations is regularly
performed in tools such as Excel, Tableau, and Spotfire.

The visualization challenge posed by each of these examples is to
keep the readers of data graphics oriented during transitions. Ideally,
viewers would accurately identify elements across disparate graphics
and understand the relationship between the current and previous
views. This is particularly important in collaborative settings such as
presentations, where viewers not interacting with the data are at a
disadvantage to predict the results of transitions.

Animation is one promising approach to facilitating perception of
changes when transitioning between related data graphics. Previous
research has found that animated transitions may help keep viewers
oriented [20, 24], facilitate learning [3] and decision-making [9], and
increase levels of engagement [24]. However, others have noted that
animation can be problematic [2, 5, 24]. Animation is no guarantee
of improved performance, involves issues of timing and complexity
that static depictions avoid, and may mislead if the animations
violate the underlying data semantics. Consequently, efforts to add
animation to standard data graphics require careful study.

In this paper, we investigate the design of animated transitions
between statistical data graphics backed by a shared data table. We
extend theoretical treatments of data graphics to include transitions
and introduce a taxonomy of transition types. We then posit design
guidelines for animated transitions and apply these principles in
DynaVis, a visualization system featuring animated data graphics.
Our primary contribution, however, is two controlled experiments
conducted to assess the efficacy of animated transitions. We find that
appropriately-designed animated transitions significantly improve
graphical perception at both syntactic and semantic levels of analysis.

2 ANIMATION

Animation has proven popular in user interfaces due in part to its
intuitive and engaging nature. Moreover, the perceptual literature
suggests that animation may be used to improve interaction and
understanding. First, motion is highly effective at attracting attention,
and unlike many other visual features is easily perceived in
peripheral vision [17]. This suggests that animation may be fruitfully

applied to direct attention to points of interest. Second, animation
facilitates object constancy for changing objects [17, 20], including
changes of position, size, shape, and color, and thus provides a
natural way of conveying transformations of an object. Third,
animated behaviors can give rise to perceptions of causality and
intentionality [16], communicating cause-and-effect relationships
and establishing narrative. Fourth, animation can be emotionally
engaging [24, 25], engendering increased interest or enjoyment.

However, each of the above features can prove more harmful
than helpful. Animation‟s ability to grab attention can be a powerful
force for distraction. Object constancy can be abused if an object is
transformed into a completely unrelated object, establishing a false
relation. Similarly, incorrect interpretations of causality may mislead
more than inform. Engagement may facilitate interest, but can be
used to make misleading information more attractive or may be
frivolous—a form of temporal “chart junk” [23]. Additionally,
animation is ephemeral, complicating comparison of items in flux.

Furthermore, there remain a number of issues when applying
animation, such as time/error tradeoffs. Animations that are too slow
may prove boring or degrade task times, while those that are too fast
may result in increased errors. Optimal times may be hard to predict
and subject to both the complexity of the scene and the familiarity of
the viewer. These and other issues have led some researchers to
instead advocate the use of static depictions of changes [2, 24]. The
upshot is that animation is a double-edged sword—designers must
take both the benefits and pitfalls under consideration.

2.1 Principles for Animation

Given the vast design space available to animators and the potential
pitfalls of animation misuse, guidelines have been proposed for
crafting effective animations. Lasseter [13] shares principles of hand-
drawn character animation, such as squash-and-stretch, exaggeration,
anticipation, staging, and slow-in slow-out timing. Zongker and
Salesin [27] discuss the use these principles for creating animated
presentations in their Slithy framework. They suggest making all
movement meaningful, eschewing principles which promote the
agency of animated items over the semantics of the animation, such
as squash-and-stretch and exaggeration. On the other hand, they
endorse the use of anticipation and staging to direct attention and
partition animations such that only one action happens at a time.

The psychologists Tversky et al [24] cast a skeptical eye on
animation, finding no benefit for communicating the workings of
complex systems. However, they make an exception for animated
transitions in visualizations and suggest two high-level principles for
effective animation. Their Congruence Principle states “the structure
and content of the external representation should correspond to the
desired structure and content of the internal representation” and their
Apprehension Principle states that “the structure and content of the
external representation should be readily and accurately perceived
and comprehended.” Interestingly, the congruence principle echoes
Mackinlay‟s expressiveness criteria for automatic generation of static

 Jeffrey Heer is with the Computer Science Division at the University of
California, Berkeley, E-Mail: jheer@cs.berkeley.edu.

 George Robertson is with Microsoft Research, E-Mail: ggr@microsoft.com

Manuscript received 31 March 2007; accepted 1 August 2007; posted online
27 October 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

mailto:tvcg@computer.org

data graphics [14], suggesting that accepted guidelines for
visualization might also be applied to animation. We revisit these
principles in greater detail later in the paper.

2.2 Animation in Information Visualization

Animation in interactive visualization has been a topic of research
for over the last decade and a half. Some research has focused on
systems issues, developing frameworks for applying animation in
user interfaces. Hudson and Stasko [11] introduced toolkit support
for animation and the Information Visualizer [19] enabled animation
and level-of-detail control with a cognitive coprocessor that was
leveraged by a number of pioneering visualizations (e.g., [20]). Other
research has focused on designing animations to facilitate perception.
One approach is to use motion as an additional visual variable within
which to encode data [1]. Another is to use animation to facilitate
understanding of transitions between different states of an interface.
We focus on this second approach.

Animated transitions have received much attention within tree
visualization. Cone Trees [20] use animated rotations at multiple
levels of a tree to bring selected items into view. Yee et al [26]
introduce valuable heuristics for animating transitions in radial tree
layouts. SpaceTrees [18] and DOITrees [10] animate tree branches
as they are expanded and collapsed. Both apply staging, breaking up

animations into distinct phases. For example, a transition within
SpaceTree might involve first collapsing a subtree, translating the
viewing region, and then expanding newly visible subtrees.

In many cases, the evaluation of animated transitions has relied
on anecdotal evidence, leaving questions as to their actual efficacy.
Some systems, however, have been the subject of formal studies of
animated transitions. StepTree [5], a 3D treemap visualization, uses
animated fading and resizing to “zoom” into subtrees. A controlled
experiment found mixed results in revisitation tasks: one set of users
successfully used navigation shortcuts in animated conditions, while
others made more errors relative to static transitions. Bederson and
Boltman [3] found that animated transitions within a family tree
explorer improved subjects‟ abilities to reconstruct the tree from
memory, evidence of facilitated learning. Robertson et al‟s studies of
polyarchy visualizations [21] found that use of animated transitions
improved both task time and user satisfaction. Simple transitions
(e.g., translation rather than rotation) about 1 second long gave the
best performance, though user preferences varied.

More recently, animated transitions have been applied within
statistical data graphics. The Name Voyager [25] stacked area chart
visualization uses animation when data is filtered, often including
scale changes that involve animating gridlines and axis labels. These
and other related uses of animation are applied in the visualizations

Figure 1. Animating from a scatter plot to a bar chart. The top path directly interpolates between the starting and ending states. The

bottom path is staged: the first stage moves points to their x-coordinates and updates the x-axis, the second stage morphs the points into bars.

Figure 2. Animating from stacked bars to grouped bars. The top path directly interpolates between the starting and ending states. The
bottom path is staged: the first stage changes the widths and x-coordinates of bars, the second stage drops the bars down to the baseline.

Figure 3. A multi-stage animation of changing values in a donut chart. Stage 1: Wedges split into two rings. Stage 2: Wedges translate

to be centered on their final position. Stage 3: Wedges then update their values, changing size. Stage 4: Wedges reunite into a single ring.

within the Many Eyes [15] web service. Gapminder [8] uses animated
data graphics in both presentation and analysis scenarios. Examples
include movement of marks to convey change over time, subdivision
of marks to indicate a drill-down operation, and shape morphing and
translation to animate from a stacked area chart to a scatter plot.

While these visualizations have proven popular and engaging,
little research has been conducted to characterize the design space of
transitions between statistical data graphics and assess how animated
transitions affect graphical perception. This paper seeks to take the
first steps in filling the gap. We start by considering the various
transitions a statistical data graphic might undergo.

3 TRANSITIONS IN STATISTICAL DATA GRAPHICS

As described by Kosslyn [12], data graphics can be considered at
three levels of analysis: syntax, semantics, and pragmatics. Syntax
concerns the actual visual marks and their composition. Semantics
focuses on the meaning of the graphic—the underlying data values
and relations that the marks represent. Pragmatics focuses on
connotations above and beyond the semantic interpretation. We limit
our discussion to the first two: syntax and semantics.

Data graphics contain different classes of syntactic elements.
These include framing marks such as axes and gridlines, identifying
marks such as labels, and data-representative marks such as points,
bars, and lines. Perceptual analysis at the syntactic level involves
recognizing to which class a mark belongs and perceiving visual
properties such as position, shape, and color, both in absolute terms
and relative to other marks. Analysis at the semantic level, on the
other hand, requires associating these syntactic properties of the
graph with the data they represent. This involves identifying marks
as representatives of specific data points and interpreting the absolute
and relative values of visually encoded elements.

Both levels of analysis are needed to formally model the state of a
data graphic. At the semantic level, one must represent the data
dimensions (or schema) being visualized (often a subset of the full
schema of the backing data table), filtering and ordering conditions,
and the actual values of data elements. The resulting syntactic
elements are determined by encoding operators, which map the
semantic description to visual objects with properties such as
position, size, shape, transparency, color hue, and value [14].

Transitions between graphics can be modeled as state changes
within this characterization. Analytic operators make changes to the
semantic model of the data graphic, editing the data schema, data
values, or visual mappings. This in turn results in changes to the
graphical syntax. In static transitions, the original syntactic form is
simply replaced with the new one. The challenge of designing
animations is to visually interpolate the syntactic features such that
semantic changes are most effectively communicated.

3.1 A Taxonomy of Transition Types

To better inform the design of animated transitions, we crafted a
taxonomy of the various types of transitions between data graphics.
We identified the following transition types by considering the
syntactic or semantic operators one might apply to a data graphic.

3.1.1 View Transformation

View transformations consist of a change in viewpoint, often
modeled as movement of a camera through a virtual space. Examples
include panning and zooming. View transformation is a purely
syntactic operator; schemas and visual encodings remain unchanged.

3.1.2 Substrate Transformation

Substrate transformations consist of changes to the spatial substrate
in which marks are embedded. Examples include axis rescaling and
log transforms as well as bifocal and graphical fisheye distortions.

3.1.3 Filtering

Filter transitions apply a predicate specifying which elements should
be visible. In response, visible items are added or removed from the

display. Filtering does not change visual encodings or data schemas,
but a substrate transformation such as axis rescaling may be desired.

3.1.4 Ordering

Ordering transitions spatially rearrange ordinal data dimensions.
Examples include sorting on attribute values and manual re-ordering.

3.1.5 Timestep

Timestep transitions apply temporal changes to data values. Apart
from the sample point from which data is drawn, the data schema
does not change. For example, a business analyst might transition
between sales figures for the current and previous year. Axis
rescaling may be desirable for some changes of value.

3.1.6 Visualization Change

Visualization transitions consist of changes to the visual mappings
applied to the data. For example, data represented in a bar chart may
instead be represented in a pie chart, or a user might edit the palettes
used for color, size, or shape encodings.

3.1.7 Data Schema Change

Data schema transitions change the data dimensions being visualized.
For example, starting from a univariate bar chart, one might wish to
visualize an additional data column, resulting in a number of possible
bivariate graphs. Such transitions may be accompanied by changes to
the visual mappings, as the bivariate graph may be presented as a
stacked or grouped bar chart, a scatterplot, or a small multiples
display. Changes of schema may be orthogonal, in which an
independent dimension is added or removed, or nested, in which the
schema change traverses a hierarchical relation between dimensions
of the data table, such as roll-up and drill-down operations.

3.2 Design Considerations

Before crafting transitions for the types identified above, we sought
principles to guide our design process. After reviewing literature in
perception, visualization, and user interface design, we arrived at the
following considerations. Our guidelines take the form of specific
recommendations for adhering to Tversky et al‟s [24] Congruence
and Apprehension principles of effective animation.

3.2.1 Congruence

Maintain valid data graphics during transitions. To ensure viewers‟
mental models are congruent with the semantics of the data, we
suggest that, as much as possible, intermediate interpolation states
remain valid data graphics. While some violations are unavoidable,
such as during shape deformations, this rule seeks to minimize
unwarranted attributions to the data. Entailments of this principle
include avoiding uninformative animation, and considering the
relation between axes and the data marks during transitions.

Use consistent semantic-syntactic mappings. To aid understanding,
similar semantic operators should have suitably similar transitions
across different types of data graphics. For example, the filtering of
items in and out of the display could be standardized across graphic
types. This should improve consistency and learnability.

Respect semantic correspondence. If syntax violates semantics, poor
interpretations may result. For example, marks representing specific
data points should not be reused to depict different data points across
a transition. Thus some data schema changes should involve the
removal and addition of marks even if the data graphic type remains
unchanged. In multivariate conditions, where marks may correspond
to multiple values, nuanced judgment is needed.

Avoid ambiguity. Avoid ambiguous semantics across transitions. For
example, timesteps in bar charts could involve animated changes of
bar heights. The same animation might be used in a data schema
change in which an unrelated variable is swapped into the bar chart.
However, not only does this abuse object constancy (see above), the
ambiguity increases the risk of misinterpreting the transition. Ideally,
semantic operators should have noticeably different transitions.

3.2.2 Apprehension

Group similar transitions. The Gestalt principle of Common Fate
[17] states that objects that undergo similar visual changes are more
likely to be perceptually grouped, helping viewers to understand that
elements are simultaneously undergoing the same operation.

Minimize occlusion. If objects occlude each other during a transition,
they will be more difficult to track, potentially harming perception.

Maximize predictability. If the target state of a transitioning item is
predictable after viewing a fraction of its trajectory, this will reduce
cognitive load and improve tracking. This suggests slow-in slow-out
timing—not only are starting and ending states emphasized, the use
of acceleration should improve spatial and temporal predictability.

Use simple transitions. Complicated transforms with unpredictable
motion paths or multiple simultaneous changes result in increased
cognitive load. Simple, direct transitions alleviate confusion, impose
less memory burden, and improve predictability. Perceptual research
provides evidence that translation and divergence (expand/contract)
motions are easier to understand than rotation [4].

Use staging for complex transitions. Some transitions are inherently
complex and do not lend themselves to simple transitions. In such
cases, one can break up the transition into a set of simple sub-
transitions, allowing multiple changes to be easily observed. For
example, separating axis rescaling from value changes may help.

Make transitions as long as needed, but no longer. Transition stages
and dwells between them must be long enough for accurate change
tracking, but when too slow can result in longer task times and
diminished engagement [2, 21]. The results of Robertson et al [21]
recommend transition times around 1 second, though transitions with
minimal movement can likely be performed faster. Empirical testing
may be needed to determine optimal parameters.

4 DYNAVIS: IMPLEMENTING ANIMATED DATA GRAPHICS

Guided by the transition taxonomy and design principles, we built
DynaVis, a visualization framework supporting animation and direct
manipulation of data graphics. As an exhaustive description of the
features and animated transitions in DynaVis are beyond the scope of
this paper, we focus on the design of selected animated transitions,
such as those of Figures 1-5. All discussed transitions are also
included in the accompanying video figure. We also note here that
all animations discussed below use slow-in slow-out timing.

4.1.1 Filtering

Different data graphics afford different techniques for the entry and
exit of filtered items. For example, bars in a bar chart may grow up
from a baseline or layers in stacked area chart might fall from the
“sky” (as in [8]). While such behaviors are engaging, we instead
opted for a consistent presentation across data graphics by fading
items in and out using alpha blending. This also avoids the non-
meaningful changes inherent in these other movements.

4.1.2 Sorting

A straightforward sorting animation directly translates the positions
of elements. While this improves on static transitions, we noticed
that occlusion sometimes complicated object tracking, particularly
when three or more items overlapped. In response, we implemented
staggering, issuing small delays in movement onset to subsequent
elements. This separates items‟ starting and ending times, making
small but noticeable decreases in the amount of overlap.

4.1.3 Substrate Transformation

Large changes of value may require axis rescaling. To make such
changes clear, axis labels and gridlines move to depict scale changes,
smoothly fading in and out when added and removed. For example,
when changing from a quantitative to an ordinal scale, old labels and
gridlines first fade out and then new ones fade in. Axis animation is
used for other changes, including transitions from linear to log scale.
We suspect this will also aid learning of different scales.

4.1.4 Timesteps

For most changes of value over time, we animate the change directly,
such as changing the heights of bars in a bar chart. This may require
axis rescaling, which is done in a separate stage either before or after
the value change, as appropriate. However, in cases such as stacked
bars, pie, and donut charts, items may translate while also changing
size. To separate these changes, we experimented with more extreme
stagings that separate translation and size changes. To do this while
also avoiding occlusion sometimes required unintuitive animations,
such as the multi-ring configuration for donut charts in Figure 3.

4.1.5 Visualization Changes

For changes in visualization type, we applied the design guidelines
above to move and reshape elements. For example, to go from a bar
chart to a pie or donut chart, we morph bars into wedges and
interpolate positions in polar coordinates (c.f., [26]). However, the
conventional clockwise order of radial graphs causes massive
occlusion, as interpolating marks travel overlapping paths. DynaVis
resolves the issue by using counter-clockwise ordering for radial
graphs. Similarly, direct interpolation of stacked bars to grouped bars
creates occlusion (Figure 2). Instead, we interpolate x-coordinates
and widths first, and y-coordinates and heights in a second stage.

4.1.6 Data Schema Changes

Data schema changes can prove complicated, affecting what data is
seen and how it is visualized. Figure 1 depicts animation from a
scatter plot to a zero-aligned bar chart, in which bivariate points
become univariate bars. The backing data table remains constant but
the visualized dimensions change: the quantitative variable on the x-
axis is removed and replaced by nominal labels. Direct interpolation
of this change translates and morphs items simultaneously. DynaVis
instead transitions to a dot plot first, updating the x-axis and
interpolating horizontal positions. A second stage grows the points
into bars. Other orthogonal schema changes are considered similarly.

Nested schema changes such as drill-down may involve both
filtering and visualization changes. For example, drill down in a bar
chart segments bars to form a stacked bar chart, which might be
followed by a transition to grouped bars (Figure 2). Similarly, scatter
plot points can split or merge upon drill-down and roll-up.

In data schema changes, animation is only appropriate when there
is a data dimension shared between the starting and ending states.
Without a shared structure between graphics, animation may be ill-
defined or misleadingly convey false relations. In such cases, we
advocate using either static or dissolve transitions (as in cinema) to
indicate the independence between graphics.

4.2 Implementation Notes

DynaVis was implemented in the C# programming language using
the Direct3D graphics framework. Data graphics such as bar charts
and scatter plots are implemented as a bundle of separate visual
encoding functions that assign position, shape, color, transparency,
and other visual properties to data marks, axes, gridlines, and labels.
Each of these encodings is implemented in a straightforward manner,
decoupled from the transition machinery. However, visual variables
are not assigned to visual items directly. Instead, values are assigned
to a special Transitioner object used to help construct transitions.

All transitions are handled by a centralized TransitionManager,
responsible for constructing animated transitions and invoking the
necessary visual mappings. The TransitionManager is similar in some
respects to the Information Visualizer‟s cognitive coprocessor [19],
supporting interpolation transitions as well as composite parallel and
sequential transitions. In fact, the aforementioned Transitioner object
is a specialized parallel transition of a set of visual items.

All analytic operations (sorting, drill down, etc) are routed
through the TransitionManager, which then builds the resulting
transition. This may involve invoking one or more sets of visual
encodings on Transitioner objects and then applying operators on the
results. For example, duration and delay operators determine timing,

while composition operators aggregate sub-transitions into parallel or
sequential transitions. A splitting operator decomposes a single
Transitioner into multiple transitions. For example, horizontal and
vertical movements might be split into separate stages of movement.
The split operator takes as input a Transitioner object, a predicate for
matching visual items to process, and a set of visual variables to
extract, outputting a new parallel transition involving the extracted
variables. Finally, the staggering operator assigns delays to sub-
transitions, spacing out the starting times within an otherwise parallel
transition. All transitions have been hand-coded into a rule system
using a simple transition description language consisting of the above
operators. Future work is needed to investigate both automatic
determination and direct manipulation of transition descriptions.

Within a single stage of animation, interpolation of most visual
variables is straightforward, typically involving a linear interpolation
of values (or polar interpolation in radial graphs). DynaVis supports
smooth morphing of shapes by interpolating between polyhedral
meshes defining shape surfaces. To ensure performance, all mesh
generation routines were carefully crafted to provide predetermined
vertex correspondences, enabling interpolation of mesh vertices
without the need for costly vertex correspondence calculations.

5 EXPERIMENTATION

Though guided by design principles, crafting animated transitions
still involves a number of trade-offs. Empirical data is needed to
gauge the actual effectiveness of transitions. In this section, we
present two experiments that assess the effect of animated transitions
on graphical perception. We describe our experimental designs and
present the results, deferring detailed discussion to the next section.

Twenty-four subjects (10 female, 14 male), all from the greater
Puget Sound area, participated in both experiments. Subjects ranged
from 26 to 62 years of age (M = 49.6, SD = 10.7). Subjects were
screened for familiarity with common data graphics and came from
professions requiring the use of data graphics, including small
business owners, college professors, analysts, and administrators.

Both experiments were conducted using standard desktop PCs.
Subjects were seated in front of 21” LCD monitors running at 1600 x
1200 pixel resolution; each visualization occupied 1000 x 600 pixels.

5.1 Experiment 1: Object Tracking

Our first experiment was designed to test the effects of animated
transitions at the syntactic level of analysis. Subjects were asked to
follow two objects across a transition and identify the locations of
the objects in the final graphic. As accurate object correspondence is

a prerequisite to further comparison, we believe this provides a
useful measure of a transition‟s effectiveness.

Six transition conditions were chosen to provide coverage of the
taxonomy of section 3.1. The transitions tested were bar chart to
donut chart (visualization change), stacked to grouped bars (drill-
down), sorting a bar chart (ordering), scatter plot to bar chart (data
schema and visualization change), zoom and filter in a scatter plot
(both rescaling and filtering), and timestep in a scatter plot (timestep
and occasional rescaling). In pilot testing, we noticed a reliance on
labels in the bar to donut and sorting transitions, so to better study
the effects of animation on both data marks and labels, we also added
versions of these transitions without labels.

As shown in Figure 4, in each trial subjects were first shown an
initial data graphic. Two targets were sequentially highlighted in the
graph, the first in red and the second in orange. After the initial graph
was visible for 3 seconds, a transition would begin. Static transitions
were immediate; animated transitions were 1.25 seconds in duration.
The display was masked 3 seconds after the transition onset, at
which point subjects were to click the final locations of the targets.
To prevent “cheating,” subjects were required to keep the mouse
pointer in a bounded region away from the graphic until the display
was masked. Subjects were instructed to make their best guess if
unsure and to click the center of the display if they had no guess.

Informal pilot studies were used to test other variants of this task.
Using only a single target allowed subjects to ignore much of the
transition, limiting generalizability. We also tried a reversed version,
in which subjects view a transition and identify where selected items
had come from. This, however, proved too error prone to be useful.

The experiment used a 3 (Animation) x 2 (Size) within-subjects
design for each transition type. The size condition varied between 8
elements (4x4=16 in the case of stacked bars) and 16 elements
(8x4=32 in the case of stacked bars). The animation condition varied
between static transitions, animated transitions where all changes
were directly interpolated, and various forms of staged animation.
Each subject performed 6 replications of the 3*2*8=48 cells for a
total of 288 trials. All trials were counterbalanced to ensure equal
data distributions and target sizes across conditions.

Staging in the bar to donut and sorting cases involved staggering
elements‟ animation with short delays to reduce occlusion. All others
involved non-overlapping stages. The stacked to grouped bars were
staged by first changing the widths of bars, then having them fall into
place. Staging in the scatter plot to bar chart condition proceeded by
first having scatter plot points move horizontally, then morphing into
bars. In the remaining scatter plot conditions, rescaling was
performed separately from either the filtering or timestep operation.

Figure 4. Experiment 1 Trial Stimulus. Subjects were shown a data graphic and two target objects were highlighted; the initial display was
visible for 3 seconds. This was followed by a static or 1.25-second animated transition. The display was masked 3 seconds after transition onset.

Subjects then clicked where they believed the target objects to be. The sequence above depicts an animated bar chart to donut chart transition.

Figure 5. Experiment 2 Trial Stimulus. Subjects were shown a data graphic and a single target object. This was followed by a static or 2-

second animated transition. The display was masked 3 seconds after transition onset. Subjects provided estimates of the percentage change of
the target object, using buttons ranging from -90% to +90% in 20% increments. A ‘?’ button was provided for situations of complete
uncertainty. The sequence above depicts a staged animation involving scale and value changes in a stacked bar chart.

The dependent measure was average error, measured as the
average pixel distance from the location of subjects‟ mouse clicks to
the respective target objects. Error was computed optimistically,
such that if participants accidentally clicked the targets in reverse
order their error rate would not be adversely affected.

5.1.1 Results

The results for animation conditions are shown in Figure 6, finding a
strong advantage for animation. Repeated Measures ANOVA found
significant differences at the .05 level for each transition type
(F(2,286) >= 22.03, p < 0.001). Post-hoc comparisons between
animation and staged animations using Fisher‟s LSD test were
significant at the .05 level for the Zoom & Filter (p = 0.026) and
Timestep Scatter Plot (p = 0.002) conditions. Sort Bars (p = 0.051)
and Bar to Donut (p = 0.071) differences were significant at the .10
level. Timestep Scatter Plot is the only transition in which staged
animation has more error than direct animation. In this case, there
were two transitions (a rescale and then movement) in a short time
period, potentially compounding opportunity for error.

Analysis across the size condition revealed that tracking error
increased with size in all conditions except the Stacked to Grouped
Bars transition. Repeated Measures ANOVA results for all transition
types except Stacked to Grouped Bars, Zoom & Filter, and Timestep
Scatter Plot were significant at the .05 level (F(2,143) >= 19.13, p <
0.001). Increasing the number of elements noticeably increased error
rates in the Bar to Donut transitions when labels were removed, but a
similar interaction did not take place in the Sort Bars transition.

5.2 Experiment 2: Estimating Changing Values

Our second experiment focused on the semantic level of analysis.
Subjects were asked to follow a single target across a transition and
estimate the percentage change in value in the underlying data. The
goal was to test the hypothesis that animation facilitates graphical
perception of changing values over time. Experiment 2 used the
same 3 x 2 within-subjects design as before. However, Experiment 2
involved only four transitions: timesteps in Scatter Plot, Grouped
Bars, Stacked Bars, and Donut Chart displays. Subjects performed 6
replications of the 3*2*4=24 cells for a total of 144 trials.

Staged animation for Scatter Plot and Grouped Bars conditions
consisted of axis rescalings (if needed) followed by timestep
animations. In the Stacked Bars and Donut Chart conditions we
tested highly staged animations, such that objects never change
position and value simultaneously. For Stacked Bars, this meant that
each stack level would update separately, starting from the top stack
sequentially down to the bottom stack. For Donut Charts, this
involved the multi-stage animations of Figure 3.

Figure 5 depicts a sample trial for Experiment 2. Subjects were
shown an initial graphic for 3 seconds before transition onset, with
only a single target highlighted. Animations were lengthened to 2
seconds in this experiment to comfortably accommodate the multi-
staged animations. The display was masked after 3 seconds, at which
point a panel of buttons appeared with which the user could enter
their estimate of the target‟s percentage change in value. The buttons
ranged from -90% to +90% by increments of 20% and indicated

0

50

100

150

200

250

Bar to Donut
(With Labels)

Bar to Donut
(No Labels)

Stacked to
Grouped Bars

Sort Bars (With
Labels)

Sort Bars (No
Labels)

Scatter Plot to
Bar Chart

Zoom & Filter
Scatter Plot

Timestep
Scatter Plot

A
ve

ra
ge

 E
rr

o
r

(i
n

 p
ix

e
ls

)

Static

Animation

Staged Animation

Figure 6. Experiment 1 Results for Animation Conditions. Animation is significantly better than static across all conditions. Except for
Timestep Scatter Plot, staged animation outperforms animation. Post-hoc analysis finds significant differences between animation and staged

animation at the .05 level for Zoom & Filter and Timestep Scatter transitions and at the .10 level for Bar to Donut and Sort Bars transitions.

0.0

0.1

0.2

0.3

Scatter Plot Grouped Bars Stacked Bars Donut Chart

A
ve

ra
ge

 E
rr

o
r

(i
n

 %
)

0

10

20

30

40

50

60

70

N Y N Y N Y N

#
 U

n
kn

o
w

n
 (

?)
 R

e
sp

o
n

se
s

Static

Animation

Staged Animation

Scatter Grouped Stacked Donut

N: No Axis Rescaling

Y: Axis Rescaling

Figure 7. Experiment 2 Results for Animation Conditions. Left: For Scatter Plot and Grouped Bars conditions, animation significantly
outperforms static transitions. Staged animation outperforms animation, but not significantly so. Stacked Bars show no significant difference,
while animation is significantly better than static transitions and staged animation in the Donut Chart. Right: The total number of unknown (?)
responses was higher for static transitions, though occurred for animation conditions when axis rescaling was performed.

1

2

3

4

5

Bar to Donut Stacked to
Grouped

Sort Bars Scatter Plot to
Bar Chart

Zoom & Filter
Scatter

Timestep
Scatter Plot

Timestep
Grouped

Timestep
Stacked

Timestep
Donut

5
-P

o
in

t
R

at
in

g

Static

Animation

Staged Animation

Figure 8. Preference Survey Results. Overall, staged animation is preferred to animation, which is preferred to static transitions. Statistically
significant differences are found for all transition types. Post-hoc analysis finds that preference for staged animation is significant at the .05 level
for all transitions except the Timestep Stacked Bars and Timestep Donut conditions, in which an extreme form of staging was applied.

percentage change both textually and graphically. Subjects were
instructed to make their best guess estimate, or use an additional „?‟
button if they were at a complete loss.

The dependent measure was estimation error, measured as the
percentage the smaller value was of the larger, regardless of order.
This measure more equitably handles proportional differences in
value (i.e., in percentage change, -50% halves the value and +90%
almost doubles it, while in the adjusted measure the differences are
-50% and +52.6%). In pilot tests, we tried using this measure as the
response variable, but it proved less intuitive than percentage change.
Before the experiment, participants were informed of the difference
between negative and positive changes, and practice trials revealed
correct answers so subjects could calibrate their estimates.

5.2.1 Results

The results for animation conditions are shown in Figure 7. Repeated
Measures ANOVA results were significant at the .05 level for the
Scatter Plot (F(2,286) = 257.82, p < 0.001), Grouped Bars (F(2,286)
= 20.25, p < 0.001), and Donut Chart (F(2,286) = 3.183, p = 0.043)
transitions, but not for Stacked Bars (F(2,286) = 1.50, p = 0.224).
Although staged animation had lowest average error for both the
Scatter Plot and Grouped Bars, post-hoc analysis found no
significant differences between animated conditions. For the Donut
Chart, animation was significantly more accurate than both static (p
= 0.043) and staged animation (p = 0.024) transitions.

Figure 7 also depicts the distribution of unknown („?‟) responses,
where subjects were unwilling to make an estimate. Static transitions
were much more likely to result in unknown responses, as were
transitions involving scale changes. Axis rescaling appears to have
increased estimation difficulty for all animation conditions.

For the size condition, Repeated Measures ANOVA results are
significant at the .05 level only for the Donut Chart (F(2,183) =
15.54, p < 0.001) condition, for which the error rate was significantly
lower when more elements were present. For all other conditions,
size did not have a significant effect.

5.3 Subjective Preferences

After the experiments, subjects completed a survey measuring their
preferences. For each transition in the experiments, subjects rated
static transitions, animation, and staged animation on a five-point
Likert scale according to how effectively they conveyed the changes
between graphics, with 5 indicating most effective. The resulting
ratings are shown in Figure 8. An ANOVA was conducted on ratings
for each transition type; all were significant at the .05 level. For all
transition types except Timestep Stacked Bars and Timestep Donut,
post-hoc analysis found that staged animation was significantly
preferred to animation (p < 0.003 in all cases). For the remaining two
transitions, no significant difference between animation conditions
was found (p = 1 and p = 0.322, respectively), mirroring the increased
error for staged animation in these conditions in Experiment 2. In all
cases, both animations were preferred to static transitions (p < 0.001).

Subjects also responded to a set of overall preference questions,
again measured using a five-point Likert scale. Subjects reported that
animated data graphics made it easier to understand transitions (M =
4.20, SD = 0.66) and were fun and engaging (M = 4.54, SD = 0.59).
Subjects also responded that they would use animated transitions in
their own data analysis (M = 4.17, SD = 0.64) and presentations (M =
4.36, SD = 0.77). Subjects expressed a desire to use animated data
graphics immediately, including a college instructor who felt they
would help her more effectively teach data graphics to her students.

6 DISCUSSION

We now discuss the experimental results, identifying trends of interest,
suggesting best practices, and noting areas in need of further inquiry.

6.1 Animation Improves Graphical Perception

The main result of the study was that animation improved graphical
perception at both syntactic (object tracking) and semantic (change

estimation) levels of analysis. Even in highly predictable transitions,
such as the stacked bars to grouped bars conditions, animation had a
significantly lower error rate. As we masked each trial stimulus, the
better performance in highly predictable cases may in part be due to
improved transfer to memory. Survey results also revealed strong
preferences for animation, as subjects found it more helpful and
engaging. Furthermore, staged animation was significantly preferred
to direct animation in most cases. This argues strongly for the efficacy
of animation for depicting transitions between data graphics.

6.2 Trade-Offs Between Design Principles

The experimental results also shed some light on the trade-offs
involved between competing design principles, as principles that aid
object tracking might not always aid semantic analysis. For changes
of value within a scatter plot, object tracking error was significantly
higher with staged animation, in which axis rescaling and value
changes occurred in separate stages. We hypothesize that these
multiple stages with shorter durations provide more opportunities for
losing targets. However, staged animation resulted in more accurate
change estimation (though not significantly so) and was significantly
preferred. Multiple subjects further commented that staging was less
demanding and that they preferred slower animations (stages were
faster in Experiment 1). As a result, we endorse the use of staged
animation for scatter plots, but recommend timing each stage around
a full second, rather than around a half-second each.

Other trade-offs involved the use of heavy staging in stacked bars
and donut charts in Experiment 2. On one hand, multi-stage
transitions separate value changes from translations, potentially
improving change estimation. On the other hand, they are more
complicated. Performance results agreed with the latter concern, as
heavily staged animation resulted in increased error. These were also
the only cases in which preference ratings for staged animation were
not significantly higher—evidence for user preference reliability.
The multi-stage examples proved overly complex, arguing that it is
preferable to minimize unnecessary motion than perform “do one
thing at a time” [27] staging. Finally, most subjects laughed upon
first viewing the multi-staged stacked bars transition. This might
prove less than desirable during a presentation of one‟s analysis.

6.3 The Case for Staging

Overall, simple staging proved beneficial, though the advantages are
not overwhelming. Except for value changes in scatter plots, staging
had lower error rates for object tracking, in some cases significantly
so. We suspect this was largely due to minimizing occlusion. This
suggests that other techniques that reduce the effects of occlusion,
such as alpha blending and outlining marks, might further improve
object tracking. Simple staging (e.g., separating axis rescaling from
value changes) also had significantly higher preference ratings and
lower (though not significantly so) error rates for change estimation.
As a result, we recommend the use of simple staging, but believe
further study is needed to reliably assess the effects of multi-staged
transitions. Future experimentation is particularly needed in regards
to timing and dwells, as we included no pauses between stages
except for that provided by slow-in slow-out timing.

6.4 The Effects of Axis Rescaling

Axis rescaling made change estimation difficult, increasing overall
error and the number of unknown („?‟) responses. However, the use
of animation tempered these effects, suggesting that movement helped
subjects make sense of scale changes. The results suggest that, if
possible, common scales should be used across timesteps to remove
the need for axis rescaling. For cases where axis rescaling is needed,
subjects significantly preferred staged animation. Furthermore, we
believe our animations could be improved; our animations faded axis
gridlines in and out during the scale change, sometimes removing
landmarks in mid-transition. Retaining grid lines through the scale
change, and then fading them out gently after all other transitions
have been completed, may improve perception of changes.

6.5 The Intricacies of the Donut

Though not directly related to the design of animated transitions, our
experiments revealed some interesting properties of donut charts.
First, change estimation errors were noticeably lower for the donut
chart than other graphs, an interesting observation given the ongoing
debate over the efficacy of radial graphs (c.f., [7, 22]). Additionally,
donut charts are the only graphic for which performance significantly
improved as the number of elements increased. As the number of
donut wedges increases, their average size decreases. Smaller wedges
are more rectilinear, exchanging angular judgment for more accurate
length judgment [6]. Furthermore, smaller items may be generally
more amenable to change estimation, at least up to a lower bound; a
hypothesis supported by Weber‟s Law of psychophysics [6]. This
suggests that similar benefits might be achieved in bar charts through
appropriate sizing. Further study is needed to evaluate this possibility.

7 CONCLUSION

In this paper, we have explored the effects of animated transitions on
graphical perception of changes between related data graphics. Two
controlled experiments found significant advantages for animation
across both syntactic and semantic tasks, providing strong evidence
that, with careful design, animated transitions can improve graphical
perception of changes between statistical data graphics.

We began by situating transitions within a theoretical model of
data graphics, developing a taxonomy of transition types. Next, we
introduced perceptually-motivated design principles for crafting
animated transitions and used them to develop transitions within our
DynaVis visualization framework. We then presented a pair of
experiments conducted with 24 participants balanced across age,
gender, and professions, investigating the effectiveness of static
transitions, animation, and staged animations for both syntactic
(object tracking) and semantic (value change estimation) tasks.

In addition to finding significant advantages for animation, our
experiments provided further insights. There was evidence that
staged animation, such as staggered movements to reduce occlusion
and separate stages for axis rescaling and value changes, provide
additional benefits. This claim is strongly backed by subject
preferences and consistently (though at times marginally) supported
by error measures. The results further discourage the use of complex
multi-stage transitions, favoring simple staging over aggressive “do
one thing at a time” [27] staging. Still, further study into the use of
timing and dwells is needed. Study results suggest additional
improvements, such as including techniques to mitigate occlusion,
avoiding axis rescaling when possible, and persisting axis gridlines as
landmarks when rescaling is unavoidable. Furthermore, a potentially
interesting interaction was observed between smaller mark sizes and
increased accuracy of change estimation.

Overall, subjects were highly enthusiastic about animated data
graphics, and felt that it facilitated both improved understanding and
increased engagement. The vast majority of participants wanted to
use animated data graphics in their own analysis and presentation.
Some participants even went to lengths after the study to thank us for
“allowing” them to participate, and expressed impatience for the
release of animated data graphics in commercial products.

In conclusion, we believe our results provide compelling evidence
for the use of animated transitions in data graphics and that the
presented design principles can be fruitfully applied in crafting
additional effective animations. Future work is needed to create
animated transitions for a wider array of graphic types, work we are
continuing to pursue within the DynaVis framework. Additional
research is needed to support both (semi-)automatic determination of
animated transitions and direct manipulation authoring and
presentation tools. Through careful adherence to design principles
and empirical evaluation, we believe animated transitions will prove
to be a productive enhancement to the already ubiquitous use of
statistical data graphics.

ACKNOWLEDGEMENTS

The authors wish to thank Danyel Fisher, Desney Tan, Mary
Czerwinski, Steven Drucker, Roland Fernandez, Maneesh Agrawala,
and Daniela Rosner for their insights and assistance.

REFERENCES

[1] L. Bartram. Enhancing Visualizations with Motion. In Proc. IEEE

InfoVis 1998, May 1998.

[2] P. Baudisch, D. Tan, M. Collomb, D. Robbins, K. Hinckley, M.

Agrawala, S. Zhao, G. Ramos. Phosphor: Explaining Transitions in the

User Interface Using Afterglow Effects. In Proc. ACM UIST 2006: 169-

178, Montreux, Switzerland, Oct 2006.

[3] B.B. Bederson, A. Boltman. Does Animation Help Users Build Mental

Maps of Spatial Information? In Proc. IEEE InfoVis 1999: 28, San

Francisco, CA, Oct 1999.

[4] M. Bertamini, D. Proffitt. Hierarchical Motion Organization in Random

Dot Configurations. In Journal of Experimental Psychology: Human

Perception and Performance, 26(4):1371-1386, 2000.

[5] T. Bladh, D.A. Carr, M. Kljun. The Effect of Animated Transitions on

User Navigation in 3D Treemaps. In Proc. Information Visualisation

2005: 297-305, Jul 2005.

[6] W.S. Cleveland, R. McGill. Graphical Perception and Graphical

Methods for Analyzing Scientific Data. Science, 229:828-833. 1985.

[7] S. Few. Show Me the Numbers: Designing Tables and Graphs to

Enlighten. Oakland, CA: Analytics Press. 2004.

[8] Gapminder. http://www.gapminder.org

[9] C. Gonzales. Does Animation in User Interfaces Improve Decision

Making? In Proc. ACM CHI 1996: 27-34, Vancouver, BC, Apr 1996.

[10] J. Heer, S.K. Card. DOITrees Revisited: Scalable, Space-Constrained

Visualization of Hierarchical Data. In Proc. Advanced Visual Interfaces

2004: 421-424, Gallipoli, Italy, June 2004.

[11] S.E. Hudson, J.T. Stasko. Animation support in a User Interface

Toolkit: Flexible, Robust, and Reusable Abstractions. In Proc. ACM

UIST 1993: 57-67, Atlanta, Georgia, Nov 1993.

[12] S.M. Kosslyn. Understanding Charts and Graphs. Applied Cognitive

Psychology, 3:185-226. 1989.

[13] J. Lasseter. Principles of Traditional Animation applied to 3D Computer

Animation. In Proc. ACM SIGGRAPH 1987: 35-44, July 1987.

[14] J.D. Mackinlay. Automating the Design of Graphical Presentations of

Relational Information. ACM Trans. on Graphics, 5(2):110-141, 1986.

[15] Many-Eyes. http://www.many-eyes.com

[16] A. Michotte. The Perception of Causality (T. Miles & E. Miles, Trans.)

London: Methuen. (Original work published 1946), 1963.

[17] S. Palmer. Vision Science: Photons to Phenomenology. MIT Press, 1999.

[18] C. Plaisant, J. Grosjean, B.B. Bederson. SpaceTree: Supporting

Exploration in a Large Node-Link Tree, Design Evolution and

Empirical Evaluation. In Proc. IEEE InfoVis 2002: 57-64, Oct. 2002.

[19] G. Robertson, S.K. Card, J.D. Mackinlay. The Cognitive Coprocessor

Architecture for Interactive User Interfaces. In Proc. ACM UIST 1989:

10-18, Williamburg, VA, Nov 1989.

[20] G. Robertson, S.K. Card, J.D. Mackinlay. Cone Trees: Animated 3D

Visualizations of Hierarchical Information. In Proc. ACM CHI 1991:

189-194, New Orleans, LA, Apr 1991.

[21] G. Robertson, K. Cameron, M. Czerwinski, D. Robbins. Animated

Visualization of Multiple Intersecting Hierarchies. Journal of

Information Visualization, 1(1):50-65. Palgrave, 2002.

[22] I. Spence, S. Lewandowsky. Displaying proportions and percentages.

Applied Cognitive Psychology, 5:61-77, 1991.

[23] E. Tufte. The Visual Display of Quantitative Information. Graphics

Press, 1983.

[24] B. Tversky, J. Morrison, M. Betrancourt. Animation: Can It Facilitate?

Int. J. Human-Computer Studies, 57:247-262, 2002.

[25] M. Wattenberg, J. Kriss. Designing for Social Data Analysis. IEEE

Trans. on Visualization and Computer Graphics. 12(4):549-557. 2006.

[26] K.-P. Yee, D. Fisher, R. Dhamija, M. Hearst. Animated Exploration of

Graphs with Radial Layout. In Proc. IEEE InfoVis 2001: 43-50, 2001.

[27] D. Zongker, D. Salesin. On Creating Animated Presentations. In Proc.

Eurographics/SIGGRAPH Symp. on Comp. Animation: 298-308, 2003.

	Introduction
	Animation
	Principles for Animation
	Animation in Information Visualization

	Transitions in Statistical Data Graphics
	A Taxonomy of Transition Types
	View Transformation
	Substrate Transformation
	Filtering
	Ordering
	Timestep
	Visualization Change
	Data Schema Change

	Design Considerations
	Congruence
	Apprehension

	DynaVis: Implementing Animated Data Graphics
	Filtering
	Sorting
	Substrate Transformation
	Timesteps
	Visualization Changes
	Data Schema Changes
	Implementation Notes

	Experimentation
	Experiment 1: Object Tracking
	Results

	Experiment 2: Estimating Changing Values
	Results

	Subjective Preferences

	Discussion
	Animation Improves Graphical Perception
	Trade-Offs Between Design Principles
	The Case for Staging
	The Effects of Axis Rescaling
	The Intricacies of the Donut

	Conclusion
	Acknowledgements
	References

