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Abstract—In this paper we investigate the effectiveness of animated transitions between common statistical data graphics such 

as bar charts, pie charts, and scatter plots. We extend theoretical models of data graphics to include such transitions, introducing 

a taxonomy of transition types. We then propose design principles for creating effective transitions and illustrate the application of 

these principles in DynaVis, a visualization system featuring animated data graphics. Two controlled experiments were conducted 

to assess the efficacy of various transition types, finding that animated transitions can significantly improve graphical perception. 
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1 INTRODUCTION 

In both analysis and presentation, it is common to view a number of 
related data graphics backed by a shared data set. For example, a 
business analyst viewing a bar chart of product sales may want to 
view relative percentages by switching to a pie chart or compare 
sales with profits in a scatter plot. Similarly, she may wish to see 
product sales by region, drilling down from a bar chart to a grouped 
bar chart. Such incremental construction of visualizations is regularly 
performed in tools such as Excel, Tableau, and Spotfire. 

The visualization challenge posed by each of these examples is to 
keep the readers of data graphics oriented during transitions. Ideally, 
viewers would accurately identify elements across disparate graphics 
and understand the relationship between the current and previous 
views.  This is particularly important in collaborative settings such as 
presentations, where viewers not interacting with the data are at a 
disadvantage to predict the results of transitions. 

Animation is one promising approach to facilitating perception of 
changes when transitioning between related data graphics. Previous 
research has found that animated transitions may help keep viewers 
oriented [20, 24], facilitate learning [3] and decision-making [9], and 
increase levels of engagement [24]. However, others have noted that 
animation can be problematic [2, 5, 24]. Animation is no guarantee 
of improved performance, involves issues of timing and complexity 
that static depictions avoid, and may mislead if the animations 
violate the underlying data semantics. Consequently, efforts to add 
animation to standard data graphics require careful study.  

In this paper, we investigate the design of animated transitions 
between statistical data graphics backed by a shared data table. We 
extend theoretical treatments of data graphics to include transitions 
and introduce a taxonomy of transition types. We then posit design 
guidelines for animated transitions and apply these principles in 
DynaVis, a visualization system featuring animated data graphics. 
Our primary contribution, however, is two controlled experiments 
conducted to assess the efficacy of animated transitions. We find that 
appropriately-designed animated transitions significantly improve 
graphical perception at both syntactic and semantic levels of analysis. 

2 ANIMATION 

Animation has proven popular in user interfaces due in part to its 
intuitive and engaging nature. Moreover, the perceptual literature 
suggests that animation may be used to improve interaction and 
understanding. First, motion is highly effective at attracting attention, 
and unlike many other visual features is easily perceived in 
peripheral vision [17]. This suggests that animation may be fruitfully 

applied to direct attention to points of interest. Second, animation 
facilitates object constancy for changing objects [17, 20], including 
changes of position, size, shape, and color, and thus provides a 
natural way of conveying transformations of an object. Third, 
animated behaviors can give rise to perceptions of causality and 
intentionality [16], communicating cause-and-effect relationships 
and establishing narrative. Fourth, animation can be emotionally 
engaging [24, 25], engendering increased interest or enjoyment.  

However, each of the above features can prove more harmful 
than helpful. Animation‟s ability to grab attention can be a powerful 
force for distraction. Object constancy can be abused if an object is 
transformed into a completely unrelated object, establishing a false 
relation. Similarly, incorrect interpretations of causality may mislead 
more than inform. Engagement may facilitate interest, but can be 
used to make misleading information more attractive or may be 
frivolous—a form of temporal “chart junk” [23]. Additionally, 
animation is ephemeral, complicating comparison of items in flux.  

Furthermore, there remain a number of issues when applying 
animation, such as time/error tradeoffs. Animations that are too slow 
may prove boring or degrade task times, while those that are too fast 
may result in increased errors. Optimal times may be hard to predict 
and subject to both the complexity of the scene and the familiarity of 
the viewer. These and other issues have led some researchers to 
instead advocate the use of static depictions of changes [2, 24]. The 
upshot is that animation is a double-edged sword—designers must 
take both the benefits and pitfalls under consideration. 

2.1 Principles for Animation 

Given the vast design space available to animators and the potential 
pitfalls of animation misuse, guidelines have been proposed for 
crafting effective animations. Lasseter [13] shares principles of hand-
drawn character animation, such as squash-and-stretch, exaggeration, 
anticipation, staging, and slow-in slow-out timing. Zongker and 
Salesin [27] discuss the use these principles for creating animated 
presentations in their Slithy framework. They suggest making all 
movement meaningful, eschewing principles which promote the 
agency of animated items over the semantics of the animation, such 
as squash-and-stretch and exaggeration. On the other hand, they 
endorse the use of anticipation and staging to direct attention and 
partition animations such that only one action happens at a time. 

The psychologists Tversky et al [24] cast a skeptical eye on 
animation, finding no benefit for communicating the workings of 
complex systems. However, they make an exception for animated 
transitions in visualizations and suggest two high-level principles for 
effective animation. Their Congruence Principle states “the structure 
and content of the external representation should correspond to the 
desired structure and content of the internal representation” and their 
Apprehension Principle states that “the structure and content of the 
external representation should be readily and accurately perceived 
and comprehended.” Interestingly, the congruence principle echoes 
Mackinlay‟s expressiveness criteria for automatic generation of static 
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data graphics [14], suggesting that accepted guidelines for 
visualization might also be applied to animation. We revisit these 
principles in greater detail later in the paper. 

2.2 Animation in Information Visualization 

Animation in interactive visualization has been a topic of research 
for over the last decade and a half. Some research has focused on 
systems issues, developing frameworks for applying animation in 
user interfaces. Hudson and Stasko [11] introduced toolkit support 
for animation and the Information Visualizer [19] enabled animation 
and level-of-detail control with a cognitive coprocessor that was 
leveraged by a number of pioneering visualizations (e.g., [20]). Other 
research has focused on designing animations to facilitate perception. 
One approach is to use motion as an additional visual variable within 
which to encode data [1]. Another is to use animation to facilitate 
understanding of transitions between different states of an interface. 
We focus on this second approach. 

Animated transitions have received much attention within tree 
visualization. Cone Trees [20] use animated rotations at multiple 
levels of a tree to bring selected items into view. Yee et al [26] 
introduce valuable heuristics for animating transitions in radial tree 
layouts. SpaceTrees [18] and DOITrees [10] animate tree branches 
as they are expanded and collapsed. Both apply staging, breaking up 

animations into distinct phases. For example, a transition within 
SpaceTree might involve first collapsing a subtree, translating the 
viewing region, and then expanding newly visible subtrees.  

In many cases, the evaluation of animated transitions has relied 
on anecdotal evidence, leaving questions as to their actual efficacy. 
Some systems, however, have been the subject of formal studies of 
animated transitions. StepTree [5], a 3D treemap visualization, uses 
animated fading and resizing to “zoom” into subtrees. A controlled 
experiment found mixed results in revisitation tasks: one set of users 
successfully used navigation shortcuts in animated conditions, while 
others made more errors relative to static transitions. Bederson and 
Boltman [3] found that animated transitions within a family tree 
explorer improved subjects‟ abilities to reconstruct the tree from 
memory, evidence of facilitated learning. Robertson et al‟s studies of 
polyarchy visualizations [21] found that use of animated transitions 
improved both task time and user satisfaction. Simple transitions 
(e.g., translation rather than rotation) about 1 second long gave the 
best performance, though user preferences varied.  

More recently, animated transitions have been applied within 
statistical data graphics. The Name Voyager [25] stacked area chart 
visualization uses animation when data is filtered, often including 
scale changes that involve animating gridlines and axis labels. These 
and other related uses of animation are applied in the visualizations 

 
Figure 1. Animating from a scatter plot to a bar chart. The top path directly interpolates between the starting and ending states. The 

bottom path is staged: the first stage moves points to their x-coordinates and updates the x-axis, the second stage morphs the points into bars. 

 
Figure 2. Animating from stacked bars to grouped bars. The top path directly interpolates between the starting and ending states. The 
bottom path is staged: the first stage changes the widths and x-coordinates of bars, the second stage drops the bars down to the baseline. 

 
Figure 3. A multi-stage animation of changing values in a donut chart. Stage 1: Wedges split into two rings. Stage 2: Wedges translate 

to be centered on their final position. Stage 3: Wedges then update their values, changing size. Stage 4: Wedges reunite into a single ring.  



within the Many Eyes [15] web service. Gapminder [8] uses animated 
data graphics in both presentation and analysis scenarios. Examples 
include movement of marks to convey change over time, subdivision 
of marks to indicate a drill-down operation, and shape morphing and 
translation to animate from a stacked area chart to a scatter plot.  

While these visualizations have proven popular and engaging, 
little research has been conducted to characterize the design space of 
transitions between statistical data graphics and assess how animated 
transitions affect graphical perception. This paper seeks to take the 
first steps in filling the gap. We start by considering the various 
transitions a statistical data graphic might undergo. 

3 TRANSITIONS IN STATISTICAL DATA GRAPHICS 

As described by Kosslyn [12], data graphics can be considered at 
three levels of analysis: syntax, semantics, and pragmatics. Syntax 
concerns the actual visual marks and their composition. Semantics 
focuses on the meaning of the graphic—the underlying data values 
and relations that the marks represent. Pragmatics focuses on 
connotations above and beyond the semantic interpretation. We limit 
our discussion to the first two: syntax and semantics. 

Data graphics contain different classes of syntactic elements. 
These include framing marks such as axes and gridlines, identifying 
marks such as labels, and data-representative marks such as points, 
bars, and lines. Perceptual analysis at the syntactic level involves 
recognizing to which class a mark belongs and perceiving visual 
properties such as position, shape, and color, both in absolute terms 
and relative to other marks. Analysis at the semantic level, on the 
other hand, requires associating these syntactic properties of the 
graph with the data they represent. This involves identifying marks 
as representatives of specific data points and interpreting the absolute 
and relative values of visually encoded elements. 

Both levels of analysis are needed to formally model the state of a 
data graphic. At the semantic level, one must represent the data 
dimensions (or schema) being visualized (often a subset of the full 
schema of the backing data table), filtering and ordering conditions, 
and the actual values of data elements. The resulting syntactic 
elements are determined by encoding operators, which map the 
semantic description to visual objects with properties such as 
position, size, shape, transparency, color hue, and value [14]. 

Transitions between graphics can be modeled as state changes 
within this characterization. Analytic operators make changes to the 
semantic model of the data graphic, editing the data schema, data 
values, or visual mappings. This in turn results in changes to the 
graphical syntax. In static transitions, the original syntactic form is 
simply replaced with the new one. The challenge of designing 
animations is to visually interpolate the syntactic features such that 
semantic changes are most effectively communicated. 

3.1 A Taxonomy of Transition Types 

To better inform the design of animated transitions, we crafted a 
taxonomy of the various types of transitions between data graphics. 
We identified the following transition types by considering the 
syntactic or semantic operators one might apply to a data graphic. 

3.1.1 View Transformation 

View transformations consist of a change in viewpoint, often 
modeled as movement of a camera through a virtual space. Examples 
include panning and zooming. View transformation is a purely 
syntactic operator; schemas and visual encodings remain unchanged. 

3.1.2 Substrate Transformation 

Substrate transformations consist of changes to the spatial substrate 
in which marks are embedded. Examples include axis rescaling and 
log transforms as well as bifocal and graphical fisheye distortions. 

3.1.3 Filtering 

Filter transitions apply a predicate specifying which elements should 
be visible. In response, visible items are added or removed from the 

display. Filtering does not change visual encodings or data schemas, 
but a substrate transformation such as axis rescaling may be desired. 

3.1.4 Ordering 

Ordering transitions spatially rearrange ordinal data dimensions. 
Examples include sorting on attribute values and manual re-ordering. 

3.1.5 Timestep 

Timestep transitions apply temporal changes to data values. Apart 
from the sample point from which data is drawn, the data schema 
does not change. For example, a business analyst might transition 
between sales figures for the current and previous year. Axis 
rescaling may be desirable for some changes of value. 

3.1.6 Visualization Change 

Visualization transitions consist of changes to the visual mappings 
applied to the data. For example, data represented in a bar chart may 
instead be represented in a pie chart, or a user might edit the palettes 
used for color, size, or shape encodings. 

3.1.7 Data Schema Change 

Data schema transitions change the data dimensions being visualized. 
For example, starting from a univariate bar chart, one might wish to 
visualize an additional data column, resulting in a number of possible 
bivariate graphs. Such transitions may be accompanied by changes to 
the visual mappings, as the bivariate graph may be presented as a 
stacked or grouped bar chart, a scatterplot, or a small multiples 
display. Changes of schema may be orthogonal, in which an 
independent dimension is added or removed, or nested, in which the 
schema change traverses a hierarchical relation between dimensions 
of the data table, such as roll-up and drill-down operations. 

3.2 Design Considerations 

Before crafting transitions for the types identified above, we sought 
principles to guide our design process. After reviewing literature in 
perception, visualization, and user interface design, we arrived at the 
following considerations. Our guidelines take the form of specific 
recommendations for adhering to Tversky et al‟s [24] Congruence 
and Apprehension principles of effective animation. 

3.2.1 Congruence 

Maintain valid data graphics during transitions. To ensure viewers‟ 
mental models are congruent with the semantics of the data, we 
suggest that, as much as possible, intermediate interpolation states 
remain valid data graphics. While some violations are unavoidable, 
such as during shape deformations, this rule seeks to minimize 
unwarranted attributions to the data. Entailments of this principle 
include avoiding uninformative animation, and considering the 
relation between axes and the data marks during transitions. 

Use consistent semantic-syntactic mappings. To aid understanding, 
similar semantic operators should have suitably similar transitions 
across different types of data graphics. For example, the filtering of 
items in and out of the display could be standardized across graphic 
types. This should improve consistency and learnability. 

Respect semantic correspondence. If syntax violates semantics, poor 
interpretations may result. For example, marks representing specific 
data points should not be reused to depict different data points across 
a transition. Thus some data schema changes should involve the 
removal and addition of marks even if the data graphic type remains 
unchanged. In multivariate conditions, where marks may correspond 
to multiple values, nuanced judgment is needed. 

Avoid ambiguity. Avoid ambiguous semantics across transitions. For 
example, timesteps in bar charts could involve animated changes of 
bar heights. The same animation might be used in a data schema 
change in which an unrelated variable is swapped into the bar chart. 
However, not only does this abuse object constancy (see above), the 
ambiguity increases the risk of misinterpreting the transition. Ideally, 
semantic operators should have noticeably different transitions. 



3.2.2 Apprehension 

Group similar transitions. The Gestalt principle of Common Fate 
[17] states that objects that undergo similar visual changes are more 
likely to be perceptually grouped, helping viewers to understand that 
elements are simultaneously undergoing the same operation. 

Minimize occlusion. If objects occlude each other during a transition, 
they will be more difficult to track, potentially harming perception. 

Maximize predictability. If the target state of a transitioning item is 
predictable after viewing a fraction of its trajectory, this will reduce 
cognitive load and improve tracking. This suggests slow-in slow-out 
timing—not only are starting and ending states emphasized, the use 
of acceleration should improve spatial and temporal predictability. 

Use simple transitions. Complicated transforms with unpredictable 
motion paths or multiple simultaneous changes result in increased 
cognitive load. Simple, direct transitions alleviate confusion, impose 
less memory burden, and improve predictability. Perceptual research 
provides evidence that translation and divergence (expand/contract) 
motions are easier to understand than rotation [4]. 

Use staging for complex transitions. Some transitions are inherently 
complex and do not lend themselves to simple transitions. In such 
cases, one can break up the transition into a set of simple sub-
transitions, allowing multiple changes to be easily observed. For 
example, separating axis rescaling from value changes may help. 

Make transitions as long as needed, but no longer. Transition stages 
and dwells between them must be long enough for accurate change 
tracking, but when too slow can result in longer task times and 
diminished engagement [2, 21]. The results of Robertson et al [21] 
recommend transition times around 1 second, though transitions with 
minimal movement can likely be performed faster. Empirical testing 
may be needed to determine optimal parameters. 

4 DYNAVIS: IMPLEMENTING ANIMATED DATA GRAPHICS 

Guided by the transition taxonomy and design principles, we built 
DynaVis, a visualization framework supporting animation and direct 
manipulation of data graphics. As an exhaustive description of the 
features and animated transitions in DynaVis are beyond the scope of 
this paper, we focus on the design of selected animated transitions, 
such as those of Figures 1-5. All discussed transitions are also 
included in the accompanying video figure. We also note here that 
all animations discussed below use slow-in slow-out timing. 

4.1.1 Filtering 

Different data graphics afford different techniques for the entry and 
exit of filtered items. For example, bars in a bar chart may grow up 
from a baseline or layers in stacked area chart might fall from the 
“sky” (as in [8]). While such behaviors are engaging, we instead 
opted for a consistent presentation across data graphics by fading 
items in and out using alpha blending. This also avoids the non-
meaningful changes inherent in these other movements. 

4.1.2 Sorting 

A straightforward sorting animation directly translates the positions 
of elements. While this improves on static transitions, we noticed 
that occlusion sometimes complicated object tracking, particularly 
when three or more items overlapped. In response, we implemented 
staggering, issuing small delays in movement onset to subsequent 
elements. This separates items‟ starting and ending times, making 
small but noticeable decreases in the amount of overlap. 

4.1.3 Substrate Transformation 

Large changes of value may require axis rescaling. To make such 
changes clear, axis labels and gridlines move to depict scale changes, 
smoothly fading in and out when added and removed. For example, 
when changing from a quantitative to an ordinal scale, old labels and 
gridlines first fade out and then new ones fade in. Axis animation is 
used for other changes, including transitions from linear to log scale. 
We suspect this will also aid learning of different scales.  

4.1.4 Timesteps 

For most changes of value over time, we animate the change directly, 
such as changing the heights of bars in a bar chart. This may require 
axis rescaling, which is done in a separate stage either before or after 
the value change, as appropriate. However, in cases such as stacked 
bars, pie, and donut charts, items may translate while also changing 
size. To separate these changes, we experimented with more extreme 
stagings that separate translation and size changes. To do this while 
also avoiding occlusion sometimes required unintuitive animations, 
such as the multi-ring configuration for donut charts in Figure 3. 

4.1.5 Visualization Changes 

For changes in visualization type, we applied the design guidelines 
above to move and reshape elements. For example, to go from a bar 
chart to a pie or donut chart, we morph bars into wedges and 
interpolate positions in polar coordinates (c.f., [26]). However, the 
conventional clockwise order of radial graphs causes massive 
occlusion, as interpolating marks travel overlapping paths. DynaVis 
resolves the issue by using counter-clockwise ordering for radial 
graphs. Similarly, direct interpolation of stacked bars to grouped bars 
creates occlusion (Figure 2). Instead, we interpolate x-coordinates 
and widths first, and y-coordinates and heights in a second stage. 

4.1.6 Data Schema Changes 

Data schema changes can prove complicated, affecting what data is 
seen and how it is visualized. Figure 1 depicts animation from a 
scatter plot to a zero-aligned bar chart, in which bivariate points 
become univariate bars. The backing data table remains constant but 
the visualized dimensions change: the quantitative variable on the x-
axis is removed and replaced by nominal labels. Direct interpolation 
of this change translates and morphs items simultaneously. DynaVis 
instead transitions to a dot plot first, updating the x-axis and 
interpolating horizontal positions. A second stage grows the points 
into bars. Other orthogonal schema changes are considered similarly. 

Nested schema changes such as drill-down may involve both 
filtering and visualization changes. For example, drill down in a bar 
chart segments bars to form a stacked bar chart, which might be 
followed by a transition to grouped bars (Figure 2). Similarly, scatter 
plot points can split or merge upon drill-down and roll-up. 

In data schema changes, animation is only appropriate when there 
is a data dimension shared between the starting and ending states. 
Without a shared structure between graphics, animation may be ill-
defined or misleadingly convey false relations. In such cases, we 
advocate using either static or dissolve transitions (as in cinema) to 
indicate the independence between graphics. 

4.2 Implementation Notes 

DynaVis was implemented in the C# programming language using 
the Direct3D graphics framework. Data graphics such as bar charts 
and scatter plots are implemented as a bundle of separate visual 
encoding functions that assign position, shape, color, transparency, 
and other visual properties to data marks, axes, gridlines, and labels. 
Each of these encodings is implemented in a straightforward manner, 
decoupled from the transition machinery. However, visual variables 
are not assigned to visual items directly. Instead, values are assigned 
to a special Transitioner object used to help construct transitions. 

All transitions are handled by a centralized TransitionManager, 
responsible for constructing animated transitions and invoking the 
necessary visual mappings. The TransitionManager is similar in some 
respects to the Information Visualizer‟s cognitive coprocessor [19], 
supporting interpolation transitions as well as composite parallel and 
sequential transitions. In fact, the aforementioned Transitioner object 
is a specialized parallel transition of a set of visual items.  

All analytic operations (sorting, drill down, etc) are routed 
through the TransitionManager, which then builds the resulting 
transition. This may involve invoking one or more sets of visual 
encodings on Transitioner objects and then applying operators on the 
results. For example, duration and delay operators determine timing, 



while composition operators aggregate sub-transitions into parallel or 
sequential transitions. A splitting operator decomposes a single 
Transitioner into multiple transitions. For example, horizontal and 
vertical movements might be split into separate stages of movement. 
The split operator takes as input a Transitioner object, a predicate for 
matching visual items to process, and a set of visual variables to 
extract, outputting a new parallel transition involving the extracted 
variables. Finally, the staggering operator assigns delays to sub-
transitions, spacing out the starting times within an otherwise parallel 
transition. All transitions have been hand-coded into a rule system 
using a simple transition description language consisting of the above 
operators. Future work is needed to investigate both automatic 
determination and direct manipulation of transition descriptions. 

Within a single stage of animation, interpolation of most visual 
variables is straightforward, typically involving a linear interpolation 
of values (or polar interpolation in radial graphs). DynaVis supports 
smooth morphing of shapes by interpolating between polyhedral 
meshes defining shape surfaces. To ensure performance, all mesh 
generation routines were carefully crafted to provide predetermined 
vertex correspondences, enabling interpolation of mesh vertices 
without the need for costly vertex correspondence calculations. 

5 EXPERIMENTATION 

Though guided by design principles, crafting animated transitions 
still involves a number of trade-offs. Empirical data is needed to 
gauge the actual effectiveness of transitions. In this section, we 
present two experiments that assess the effect of animated transitions 
on graphical perception. We describe our experimental designs and 
present the results, deferring detailed discussion to the next section. 

Twenty-four subjects (10 female, 14 male), all from the greater 
Puget Sound area, participated in both experiments. Subjects ranged 
from 26 to 62 years of age (M = 49.6, SD = 10.7). Subjects were 
screened for familiarity with common data graphics and came from 
professions requiring the use of data graphics, including small 
business owners, college professors, analysts, and administrators. 

Both experiments were conducted using standard desktop PCs. 
Subjects were seated in front of 21” LCD monitors running at 1600 x 
1200 pixel resolution; each visualization occupied 1000 x 600 pixels. 

5.1 Experiment 1: Object Tracking 

Our first experiment was designed to test the effects of animated 
transitions at the syntactic level of analysis. Subjects were asked to 
follow two objects across a transition and identify the locations of 
the objects in the final graphic. As accurate object correspondence is 

a prerequisite to further comparison, we believe this provides a 
useful measure of a transition‟s effectiveness. 

Six transition conditions were chosen to provide coverage of the 
taxonomy of section 3.1. The transitions tested were bar chart to 
donut chart (visualization change), stacked to grouped bars (drill-
down), sorting a bar chart (ordering), scatter plot to bar chart (data 
schema and visualization change), zoom and filter in a scatter plot 
(both rescaling and filtering), and timestep in a scatter plot (timestep 
and occasional rescaling). In pilot testing, we noticed a reliance on 
labels in the bar to donut and sorting transitions, so to better study 
the effects of animation on both data marks and labels, we also added 
versions of these transitions without labels. 

As shown in Figure 4, in each trial subjects were first shown an 
initial data graphic. Two targets were sequentially highlighted in the 
graph, the first in red and the second in orange. After the initial graph 
was visible for 3 seconds, a transition would begin. Static transitions 
were immediate; animated transitions were 1.25 seconds in duration. 
The display was masked 3 seconds after the transition onset, at 
which point subjects were to click the final locations of the targets. 
To prevent “cheating,” subjects were required to keep the mouse 
pointer in a bounded region away from the graphic until the display 
was masked. Subjects were instructed to make their best guess if 
unsure and to click the center of the display if they had no guess.  

Informal pilot studies were used to test other variants of this task. 
Using only a single target allowed subjects to ignore much of the 
transition, limiting generalizability. We also tried a reversed version, 
in which subjects view a transition and identify where selected items 
had come from. This, however, proved too error prone to be useful. 

The experiment used a 3 (Animation) x 2 (Size) within-subjects 
design for each transition type. The size condition varied between 8 
elements (4x4=16 in the case of stacked bars) and 16 elements 
(8x4=32 in the case of stacked bars). The animation condition varied 
between static transitions, animated transitions where all changes 
were directly interpolated, and various forms of staged animation. 
Each subject performed 6 replications of the 3*2*8=48 cells for a 
total of 288 trials. All trials were counterbalanced to ensure equal 
data distributions and target sizes across conditions. 

Staging in the bar to donut and sorting cases involved staggering 
elements‟ animation with short delays to reduce occlusion. All others 
involved non-overlapping stages. The stacked to grouped bars were 
staged by first changing the widths of bars, then having them fall into 
place. Staging in the scatter plot to bar chart condition proceeded by 
first having scatter plot points move horizontally, then morphing into 
bars. In the remaining scatter plot conditions, rescaling was 
performed separately from either the filtering or timestep operation. 

 
 

Figure 4. Experiment 1 Trial Stimulus. Subjects were shown a data graphic and two target objects were highlighted; the initial display was 
visible for 3 seconds. This was followed by a static or 1.25-second animated transition. The display was masked 3 seconds after transition onset. 

Subjects then clicked where they believed the target objects to be. The sequence above depicts an animated bar chart to donut chart transition. 

 

 
 
Figure 5. Experiment 2 Trial Stimulus. Subjects were shown a data graphic and a single target object. This was followed by a static or 2-

second animated transition. The display was masked 3 seconds after transition onset. Subjects provided estimates of the percentage change of 
the target object, using buttons ranging from -90% to +90% in 20% increments. A ‘?’ button was provided for situations of complete 
uncertainty. The sequence above depicts a staged animation involving scale and value changes in a stacked bar chart.  



The dependent measure was average error, measured as the 
average pixel distance from the location of subjects‟ mouse clicks to 
the respective target objects. Error was computed optimistically, 
such that if participants accidentally clicked the targets in reverse 
order their error rate would not be adversely affected. 

5.1.1 Results 

The results for animation conditions are shown in Figure 6, finding a 
strong advantage for animation. Repeated Measures ANOVA found 
significant differences at the .05 level for each transition type 
(F(2,286) >= 22.03, p < 0.001). Post-hoc comparisons between 
animation and staged animations using Fisher‟s LSD test were 
significant at the .05 level for the Zoom & Filter (p = 0.026) and 
Timestep Scatter Plot (p = 0.002) conditions. Sort Bars (p = 0.051) 
and Bar to Donut (p = 0.071) differences were significant at the .10 
level. Timestep Scatter Plot is the only transition in which staged 
animation has more error than direct animation. In this case, there 
were two transitions (a rescale and then movement) in a short time 
period, potentially compounding opportunity for error. 

Analysis across the size condition revealed that tracking error 
increased with size in all conditions except the Stacked to Grouped 
Bars transition. Repeated Measures ANOVA results for all transition 
types except Stacked to Grouped Bars, Zoom & Filter, and Timestep 
Scatter Plot were significant at the .05 level (F(2,143) >= 19.13, p < 
0.001). Increasing the number of elements noticeably increased error 
rates in the Bar to Donut transitions when labels were removed, but a 
similar interaction did not take place in the Sort Bars transition. 

5.2 Experiment 2: Estimating Changing Values 

Our second experiment focused on the semantic level of analysis. 
Subjects were asked to follow a single target across a transition and 
estimate the percentage change in value in the underlying data. The 
goal was to test the hypothesis that animation facilitates graphical 
perception of changing values over time. Experiment 2 used the 
same 3 x 2 within-subjects design as before. However, Experiment 2 
involved only four transitions: timesteps in Scatter Plot, Grouped 
Bars, Stacked Bars, and Donut Chart displays. Subjects performed 6 
replications of the 3*2*4=24 cells for a total of 144 trials. 

Staged animation for Scatter Plot and Grouped Bars conditions 
consisted of axis rescalings (if needed) followed by timestep 
animations. In the Stacked Bars and Donut Chart conditions we 
tested highly staged animations, such that objects never change 
position and value simultaneously. For Stacked Bars, this meant that 
each stack level would update separately, starting from the top stack 
sequentially down to the bottom stack. For Donut Charts, this 
involved the multi-stage animations of Figure 3. 

Figure 5 depicts a sample trial for Experiment 2. Subjects were 
shown an initial graphic for 3 seconds before transition onset, with 
only a single target highlighted. Animations were lengthened to 2 
seconds in this experiment to comfortably accommodate the multi-
staged animations. The display was masked after 3 seconds, at which 
point a panel of buttons appeared with which the user could enter 
their estimate of the target‟s percentage change in value. The buttons 
ranged from -90% to +90% by increments of 20% and indicated 
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Figure 6. Experiment 1 Results for Animation Conditions. Animation is significantly better than static across all conditions. Except for 
Timestep Scatter Plot, staged animation outperforms animation. Post-hoc analysis finds significant differences between animation and staged 

animation at the .05 level for Zoom & Filter and Timestep Scatter transitions and at the .10 level for Bar to Donut and Sort Bars transitions. 
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Figure 7. Experiment 2 Results for Animation Conditions. Left: For Scatter Plot and Grouped Bars conditions, animation significantly 
outperforms static transitions. Staged animation outperforms animation, but not significantly so. Stacked Bars show no significant difference, 
while animation is significantly better than static transitions and staged animation in the Donut Chart. Right: The total number of unknown (?) 
responses was higher for static transitions, though occurred for animation conditions when axis rescaling was performed. 
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Figure 8. Preference Survey Results. Overall, staged animation is preferred to animation, which is preferred to static transitions. Statistically 
significant differences are found for all transition types. Post-hoc analysis finds that preference for staged animation is significant at the .05 level 
for all transitions except the Timestep Stacked Bars and Timestep Donut conditions, in which an extreme form of staging was applied. 



percentage change both textually and graphically. Subjects were 
instructed to make their best guess estimate, or use an additional „?‟ 
button if they were at a complete loss.  

The dependent measure was estimation error, measured as the 
percentage the smaller value was of the larger, regardless of order. 
This measure more equitably handles proportional differences in 
value (i.e., in percentage change, -50% halves the value and +90% 
almost doubles it, while in the adjusted measure the differences are   
-50% and +52.6%). In pilot tests, we tried using this measure as the 
response variable, but it proved less intuitive than percentage change. 
Before the experiment, participants were informed of the difference 
between negative and positive changes, and practice trials revealed 
correct answers so subjects could calibrate their estimates. 

5.2.1 Results 

The results for animation conditions are shown in Figure 7. Repeated 
Measures ANOVA results were significant at the .05 level for the 
Scatter Plot (F(2,286) = 257.82, p < 0.001), Grouped Bars (F(2,286) 
= 20.25, p < 0.001), and Donut Chart (F(2,286) = 3.183, p = 0.043) 
transitions, but not for Stacked Bars (F(2,286) = 1.50, p = 0.224). 
Although staged animation had lowest average error for both the 
Scatter Plot and Grouped Bars, post-hoc analysis found no 
significant differences between animated conditions. For the Donut 
Chart, animation was significantly more accurate than both static (p 
= 0.043) and staged animation (p = 0.024) transitions. 

Figure 7 also depicts the distribution of unknown („?‟) responses, 
where subjects were unwilling to make an estimate. Static transitions 
were much more likely to result in unknown responses, as were 
transitions involving scale changes. Axis rescaling appears to have 
increased estimation difficulty for all animation conditions. 

For the size condition, Repeated Measures ANOVA results are 
significant at the .05 level only for the Donut Chart (F(2,183) = 
15.54, p < 0.001) condition, for which the error rate was significantly 
lower when more elements were present. For all other conditions, 
size did not have a significant effect. 

5.3 Subjective Preferences 

After the experiments, subjects completed a survey measuring their 
preferences. For each transition in the experiments, subjects rated 
static transitions, animation, and staged animation on a five-point 
Likert scale according to how effectively they conveyed the changes 
between graphics, with 5 indicating most effective. The resulting 
ratings are shown in Figure 8. An ANOVA was conducted on ratings 
for each transition type; all were significant at the .05 level. For all 
transition types except Timestep Stacked Bars and Timestep Donut, 
post-hoc analysis found that staged animation was significantly 
preferred to animation (p < 0.003 in all cases). For the remaining two 
transitions, no significant difference between animation conditions 
was found (p = 1 and p = 0.322, respectively), mirroring the increased 
error for staged animation in these conditions in Experiment 2. In all 
cases, both animations were preferred to static transitions (p < 0.001).  

Subjects also responded to a set of overall preference questions, 
again measured using a five-point Likert scale. Subjects reported that 
animated data graphics made it easier to understand transitions (M = 
4.20, SD = 0.66) and were fun and engaging (M = 4.54, SD = 0.59). 
Subjects also responded that they would use animated transitions in 
their own data analysis (M = 4.17, SD = 0.64) and presentations (M = 
4.36, SD = 0.77). Subjects expressed a desire to use animated data 
graphics immediately, including a college instructor who felt they 
would help her more effectively teach data graphics to her students. 

6 DISCUSSION 

We now discuss the experimental results, identifying trends of interest, 
suggesting best practices, and noting areas in need of further inquiry. 

6.1 Animation Improves Graphical Perception 

The main result of the study was that animation improved graphical 
perception at both syntactic (object tracking) and semantic (change 

estimation) levels of analysis. Even in highly predictable transitions, 
such as the stacked bars to grouped bars conditions, animation had a 
significantly lower error rate. As we masked each trial stimulus, the 
better performance in highly predictable cases may in part be due to 
improved transfer to memory. Survey results also revealed strong 
preferences for animation, as subjects found it more helpful and 
engaging. Furthermore, staged animation was significantly preferred 
to direct animation in most cases. This argues strongly for the efficacy 
of animation for depicting transitions between data graphics. 

6.2 Trade-Offs Between Design Principles 

The experimental results also shed some light on the trade-offs 
involved between competing design principles, as principles that aid 
object tracking might not always aid semantic analysis. For changes 
of value within a scatter plot, object tracking error was significantly 
higher with staged animation, in which axis rescaling and value 
changes occurred in separate stages. We hypothesize that these 
multiple stages with shorter durations provide more opportunities for 
losing targets. However, staged animation resulted in more accurate 
change estimation (though not significantly so) and was significantly 
preferred. Multiple subjects further commented that staging was less 
demanding and that they preferred slower animations (stages were 
faster in Experiment 1). As a result, we endorse the use of staged 
animation for scatter plots, but recommend timing each stage around 
a full second, rather than around a half-second each. 

Other trade-offs involved the use of heavy staging in stacked bars 
and donut charts in Experiment 2. On one hand, multi-stage 
transitions separate value changes from translations, potentially 
improving change estimation. On the other hand, they are more 
complicated. Performance results agreed with the latter concern, as 
heavily staged animation resulted in increased error. These were also 
the only cases in which preference ratings for staged animation were 
not significantly higher—evidence for user preference reliability. 
The multi-stage examples proved overly complex, arguing that it is 
preferable to minimize unnecessary motion than perform “do one 
thing at a time” [27] staging. Finally, most subjects laughed upon 
first viewing the multi-staged stacked bars transition. This might 
prove less than desirable during a presentation of one‟s analysis. 

6.3 The Case for Staging 

Overall, simple staging proved beneficial, though the advantages are 
not overwhelming. Except for value changes in scatter plots, staging 
had lower error rates for object tracking, in some cases significantly 
so. We suspect this was largely due to minimizing occlusion. This 
suggests that other techniques that reduce the effects of occlusion, 
such as alpha blending and outlining marks, might further improve 
object tracking. Simple staging (e.g., separating axis rescaling from 
value changes) also had significantly higher preference ratings and 
lower (though not significantly so) error rates for change estimation. 
As a result, we recommend the use of simple staging, but believe 
further study is needed to reliably assess the effects of multi-staged 
transitions. Future experimentation is particularly needed in regards 
to timing and dwells, as we included no pauses between stages 
except for that provided by slow-in slow-out timing. 

6.4 The Effects of Axis Rescaling 

Axis rescaling made change estimation difficult, increasing overall 
error and the number of unknown („?‟) responses. However, the use 
of animation tempered these effects, suggesting that movement helped 
subjects make sense of scale changes. The results suggest that, if 
possible, common scales should be used across timesteps to remove 
the need for axis rescaling. For cases where axis rescaling is needed, 
subjects significantly preferred staged animation. Furthermore, we 
believe our animations could be improved; our animations faded axis 
gridlines in and out during the scale change, sometimes removing 
landmarks in mid-transition. Retaining grid lines through the scale 
change, and then fading them out gently after all other transitions 
have been completed, may improve perception of changes. 



6.5 The Intricacies of the Donut 

Though not directly related to the design of animated transitions, our 
experiments revealed some interesting properties of donut charts. 
First, change estimation errors were noticeably lower for the donut 
chart than other graphs, an interesting observation given the ongoing 
debate over the efficacy of radial graphs (c.f., [7, 22]). Additionally, 
donut charts are the only graphic for which performance significantly 
improved as the number of elements increased. As the number of 
donut wedges increases, their average size decreases. Smaller wedges 
are more rectilinear, exchanging angular judgment for more accurate 
length judgment [6]. Furthermore, smaller items may be generally 
more amenable to change estimation, at least up to a lower bound; a 
hypothesis supported by Weber‟s Law of psychophysics [6]. This 
suggests that similar benefits might be achieved in bar charts through 
appropriate sizing. Further study is needed to evaluate this possibility. 

7 CONCLUSION 

In this paper, we have explored the effects of animated transitions on 
graphical perception of changes between related data graphics. Two 
controlled experiments found significant advantages for animation 
across both syntactic and semantic tasks, providing strong evidence 
that, with careful design, animated transitions can improve graphical 
perception of changes between statistical data graphics.  

We began by situating transitions within a theoretical model of 
data graphics, developing a taxonomy of transition types. Next, we 
introduced perceptually-motivated design principles for crafting 
animated transitions and used them to develop transitions within our 
DynaVis visualization framework. We then presented a pair of 
experiments conducted with 24 participants balanced across age, 
gender, and professions, investigating the effectiveness of static 
transitions, animation, and staged animations for both syntactic 
(object tracking) and semantic (value change estimation) tasks. 

In addition to finding significant advantages for animation, our 
experiments provided further insights. There was evidence that 
staged animation, such as staggered movements to reduce occlusion 
and separate stages for axis rescaling and value changes, provide 
additional benefits. This claim is strongly backed by subject 
preferences and consistently (though at times marginally) supported 
by error measures.  The results further discourage the use of complex 
multi-stage transitions, favoring simple staging over aggressive “do 
one thing at a time” [27] staging. Still, further study into the use of 
timing and dwells is needed. Study results suggest additional 
improvements, such as including techniques to mitigate occlusion, 
avoiding axis rescaling when possible, and persisting axis gridlines as 
landmarks when rescaling is unavoidable. Furthermore, a potentially 
interesting interaction was observed between smaller mark sizes and 
increased accuracy of change estimation. 

Overall, subjects were highly enthusiastic about animated data 
graphics, and felt that it facilitated both improved understanding and 
increased engagement. The vast majority of participants wanted to 
use animated data graphics in their own analysis and presentation. 
Some participants even went to lengths after the study to thank us for 
“allowing” them to participate, and expressed impatience for the 
release of animated data graphics in commercial products. 

In conclusion, we believe our results provide compelling evidence 
for the use of animated transitions in data graphics and that the 
presented design principles can be fruitfully applied in crafting 
additional effective animations. Future work is needed to create 
animated transitions for a wider array of graphic types, work we are 
continuing to pursue within the DynaVis framework. Additional 
research is needed to support both (semi-)automatic determination of 
animated transitions and direct manipulation authoring and 
presentation tools. Through careful adherence to design principles 
and empirical evaluation, we believe animated transitions will prove 
to be a productive enhancement to the already ubiquitous use of 
statistical data graphics. 
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